## JVC

## SERVICE MANUAL COMPACT COMPONENT SYSTEM

## MX-K35V



Area suffix
US
Singapore
UX ------------------ Saudi Arabia

## Contents

Safety precautions ..... 1-2
Preventing static electricity ..... 1-3
Important for laser products ..... 1-4
Disassembly method ..... 1-5
Adjustment method ..... 1-20
Flow of functional operationuntil TOC read1-22
Maintenance of laser pickup ..... 1-23
Replacement of laser pickup ..... 1-23
Description of major ICs ..... 1-24
Wiring connections ..... 1-35

## Safety Precautions

1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by ( $\Lambda$ ) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after re-assembling.
5. Leakage currnet check (Electrical shock hazard testing)

After re-assembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.
Do not use a line isolation transformer during this check.

- Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed $0.5 \mathrm{~mA} A C$ (r.m.s.).
- Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a $1,500 \Omega 10 \mathrm{~W}$ resistor paralleled by a $0.15 \mu \mathrm{~F}$ AC-type capacitor between an exposed metal part and a known good earth ground. Measure the AC voltage across the resistor with the AC voltmeter.
Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and meausre the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. Voltage measured any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).


## Warning

1. This equipment has been designed and manufactured to meet international safety standards.
2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
3. Repairs must be made in accordance with the relevant safety standards.
4. It is essential that safety critical components are replaced by approved parts.
5. If mains voltage selector is provided, check setting for local voltage.

## CAUTION

> | Burrs formed during molding may |
| :--- |
| be left over on some parts of the |
| chassis. Therefore, pay attention to |
| such burrs in the case of |
| preforming repair of this system. |

In regard with component parts appearing on the silk-screen printed side (parts side) of the PWB diagrams, the parts that are printed over with black such as the resistor ( - ) diode ( $\boldsymbol{\square}$ ) and ICP ( ) or identified by the " $\mathbb{\wedge}$ mark nearby are critical for safety.
(This regulation does not correspond to J and C version.)

## Preventing static electricity

## 1. Grounding to prevent damage by static electricity

Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.

## 2. About the earth processing for the destruction prevention by static electricity

In the equipment which uses optical pick-up (laser diode), optical pick-up is destroyed by the static electricity of the work environment.
Be careful to use proper grounding in the area where repairs are being performed.

## 2-1 Ground the workbench

Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the traverse unit (optical pickup) on it.

## 2-2 Ground yourself

Use an anti-static wrist strap to release any static electricity built up in your body.


## 3. Handling the optical pickup

1. In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical pickup are shorted. After replacement, return the shorted parts to their original condition. (Refer to the text.)
2. Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily destroy the laser diode.

## 4. Handling the CD changer unit (optical pickup)

1. Do not subject the CD changer unit (optical pickup) to strong shocks, as it is a sensitive, complex unit.
2. Cut off the shorted part of the flexible cable using nippers, etc. after replacing the optical pickup. For specific details, refer to the replacement procedure in the text. Remove the anti-static pin when replacing the CD changer unit. Be careful not to take too long a time when attaching it to the connector.
3. Handle the flexible cable carefully as it may break when subjected to strong force.
4. It is not possible to adjust the semi-fixed resistor that adjusts the laser power. Do not turn it

## Attention when traverse unit is decomposed

*Please refer to "Disassembly method" in the text for pick-up and how to detach the CD changer mechanism.

1. Remove the CD changer unit.
2. Disconnect the harness from connector on the CD motor board.
3. Solder is put up before the card wire is removed from connector CN601 on the main board as shown in Fig. 1 and Fig. 2.
(When the wire is removed without putting up solder, the CD pick-up assembly might destroy.)
4. Please remove solder after connecting the card wire with CN601 when you install picking up in the substrate.


Fig. 2

## Important for laser products

## 1.CLASS 1 LASER PRODUCT

2.DANGER : Invisible laser radiation when open and inter lock failed or defeated. Avoid direct exposure to beam.
3.CAUTION : There are no serviceable parts inside the Laser Unit. Do not disassemble the Laser Unit. Replace the complete Laser Unit if it malfunctions.
4.CAUTION : The compact disc player uses invisible laserradiation and is equipped with safety switches whichprevent emission of radiation when the drawer is open and the safety interlocks have failed or are de feated. It is dangerous to defeat the safety switches.
5.CAUTION : If safety switches malfunction, the laser is able to function.
6.CAUTION : Use of controls, adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

CAUTION Please use enough caution not to see the beam directly or touch it in case of an adjustment or operation check.

ADVARSEL : Usynlig laserstråling ved åbning, når sikkerhedsafbrydere er ude af funktion. Undgå udsættelse for stråling.
ADVARSEL : Usynlig laserstråling ved åpning,når sikkerhetsbryteren er avslott. unngå utsettelse for stråling.

REPRODUCTION AND POSITION OF LABELS

## WARNING LABEL



## Disassembly method

Commence disassembly of this set by removing the main units and then proceed to the components and assemblies inside the units.
Replacement of the fuses and the power IC ..... 1-6
Top cover ..... 1-7
$\square$ CD changer unit ..... 1-8

- Front panel assembly ..... 1-9
Chassis unit ..... 1-17
- CD changer unit ..... 1-8
■ Removing the main board ..... 1-10
■ Removing the CD changer mechanism assembly ..... 1-11
■ Removing the CD pickup ..... 1-12
■ Replacing the loading motor and belt of the CD changer tray ..... 1-12
■ Replacing the CD tray rotor belt of the CD changer, and removing the motor ..... 1-12
- Front panel assembly ..... 1-9
■ Removing the cassette deck mechanism ..... 1-13
■ Removing the head phone board ..... 1-13
■ Removing the microphone amplifier board ..... 1-14
■ Removing the control/FL board ..... 1-14
■ Removing the switch board and active bass ex. switch board ..... 1-15
■ Removing the cassette deck main motor, and replacing the main belts ..... 1-16
■ Removing the leaf switches of the cassette deck mechanism ..... 1-16
$\square$ Removing the cassette deck heads ..... 1-17
Chassis unit ..... 1-17
■ Removing the Video \& CD board ..... 1-17
■ Removing the 3-pin regulator ..... 1-18
■ Removing the power amplifier board, voltage selector board and power transformer board ..... 1-19


## <Disassembly of the main blocks of this set>

Replacement of the fuses and the power IC

## ■ Replacing the fuses (See Fig.1)

- Prior to performing the following procedure, remove the top cover.

1. Replace the fuses inside.
[Caution] Be sure to use fuses with the specified ratings.


Fig. 1


Fig. 2


Fig. 3


Fig. 4

## Removing the top cover

(See Fig. 5 and 6)

1. Remove the two screws $\mathbf{C}$ and four screws $\mathbf{D}$ that retain the top cover from the rear of the body.
2. Remove the four screws E retain the top cover from the two sides of the body.
3. Remove the top cover from the body by lifting it toward the rear.


Fig. 5


Fig. 6

## Removing the CD changer unit

 (See Fig. 7 to 10)- Prior to performing the following procedures, remove the top cover.
[Caution] Although the CD mechanism unit can be removed without removing the CD tray panel, it is still recommended to remove it in order to prevent damage.
a. From the front panel side of this set, push in the sections marked with arrows and pull out the $C D$ tray toward the front.
b. Remove the CD tray panel by pushing both of its extremities upward in the direction of the arrows.
c. Push the CD tray deep into the set.

1. Disconnect the cassette head wires from the connectors CN307 and CN308 on the main board, which is located below the CD changer unit.
2. Disconnect the microphone amplifier wire from the connector CN306 on the main board.
3. Disconnect the card wires from the connectors CN301, CN302, CN305 and CN606 on the main board.
4. Disconnect the parallel wires from the connectors CN902A, CN902B and CN902C on the power amplifier board.
5. From the rear of the set, remove the two screws $\mathbf{F}$ retaining the CD changer unit, then remove the four screws $\mathbf{G}$ retaining the ANTENNA terminal the AUX IN terminal and LINE OUT terminal.
6. Push down and disengage the two claws a holding the CD changer unit at the bottom of its front panel and then remove the CD changer unit.(See Fig. 10)


Fig. 7


Fig. 8


## Removing the front panel assembly

(See Fig. 11 and 12)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.

1. Disconnect the parallel wire and card wire from the connectors CN901 and CN903 on the power amplifier board.
2. Remove the two screws $\mathbf{H}$ retaining the front panel assembly onto the bottom of the body.
3. Remove the screw $\mathbf{J}$ retaining the cassette deck mechanism and then remove the GND lug $\mathbf{b}$ that comes from the power amplifier board.
4. Disengage the claws $\mathbf{c}$ on both sides at the bottom of the front panel assembly and then remove the assembly.


Fig. 11


Fig. 12

## <Disassembly of units and assembly inside this set>

## Removing the main board

(See Fig. 13 and 14)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.

1. Disconnect the wires from CN602 and CN603 on the main board, which is located on the backside of the CD changer unit.
2. Disconnect the card wire from connector CN604 of the main board at the back of the CD changer unit.
3. The three screws $\mathbf{K}$ and screw with washer $\mathbf{L}$ retain the main board should be removed.
4. Remove the main board by pulling it toward the side where the CN601 is located.
5. Using solder, short the CD pickup to connect to short round.

## [Caution] (See Fig.14)

After re-connecting the wires, be sure to remove the shorting solder from the GND connection.
6. Disconnect the card wire from the connector CN601 on the main board and then remove the main board.


Fig. 13


Fig. 14

## Removing the CD changer mechanism assembly (See Fig. 15 to 17)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.

1. Remove the spring $\mathbf{d}$ from the front surface of the CD changer mechanism unit.
2. Turn the CD changer mechanism unit upside down, and remove the spring e connecting the unit to the CD changer mechanism assembly.
[Note] When re-assembling after the disassembly work, apply bonding agent on the spring to prevent it from slipping off.
3. Remove the two screws with the washer $\mathbf{M}$ retaining the CD changer mechanism assembly.
[Caution] When replacing the CD changer mechanism assembly, be sure not to mistake the positions of the red and blue dampers.


Fig. 16


Fig. 15


Fig. 17

## - Removing the CD pickup (See Fig.18)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.
- Also remove the CD changer mechanism assembly.

1. Widen the section $f$.
2. While keeping the section $f$ wide open, push the section $\mathbf{g}$ in the direction of the arrow to remove the shaft, and then remove the CD pickup.

## - Replacing the loading motor and belt of the CD changer tray (See Fig.19)

- Prior to performing the following procedure, remove the top cover.

1. Pull out the CD changer tray.
2. Remove the belt from the pulley.
3. Remove the two screws $\mathbf{N}$ retaining the $C D$ changer tray loading motor.
[Caution] When pushing in the CD changer tray, be sure to lower the CD changer mechanism assembly by manually turning the UD cam gear in the direction of the arrow.

- Replacing the CD tray rotor belt of the CD changer, and removing the motor (See Fig. 20 and 21)
- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.

1. Remove the two screws $\mathbf{P}$ retaining the stopper brackets on both sides of the CD changer unit.
2. Remove the stopper brackets from both sides of the CD changer unit.
3. Pull out the CD tray from the CD changer unit, all the way and then lift the tray upward to remove.
4. Turn the CD tray upside down and remove the tray rotor belt from the pulley.
5. Turn the CD tray upside down and disconnect the card wire from the connector CN605 on the CD tray rotor motor assembly.
6. Remove the two screws $\mathbf{Q}$ retaining the CD tray rotor motor, and then remove the CD tray rotor motor.


Fig. 20


Fig. 19


## Removing the cassette deck mechanism (See Fig.22)

- Prior to performing the following procedure, remove the top cover.
- Also remove the CD changer unit.
- Also remove the front panel assembly.

1. Remove the five screws $\mathbf{R}$ retaining the cassette deck mechanism and then remove the wire clamp lug $\mathbf{h}$ that comes from the back of the front panel assembly.

## Removing the head phone board

(See Fig.23)

- Prior to performing the following procedure, remove the top cover
- Also remove the CD changer unit.
- Also remove the front panel assembly.

1. Remove the screw with the washer, $\mathbf{S}$ that retains the head phone board from the back of the front panel assembly.


Fig. 22


Fig. 23

## Removing the microphone amplifier board <br> (See Fig. 24 and 25)

- Prior to performing the following procedure, remove the top cover
- Also remove the CD changer unit.
- Also remove the front panel assembly.

1. Pull out the mic volume knob from the front of the front panel assembly.
2. Remove the screw with the washer, $\mathbf{T}$ that retains the microphone amplifier board.

- Prior to performing the following procedure, remove the top cover.
- Also remove the CD changer unit.

1. Remove the three screws $\mathbf{U}$ that retain the control/FL board from the back of the front panel assembly.

## Removing the control/FL board

Fig. 25


Fig. 26

## - Removing the switch board and active bass ex. switch board

(See Fig. 26 to 29)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.
- Also remove the front panel assembly.

1. Pull out the volume control knob from the front of the front panel assembly.
2. Remove the nut and washer retaining the volume knob shaft.
3. Remove the three screws $\mathbf{U}$ retaining the control/FL board from the back of the front panel assembly.
4. Remove the control/FL board.
5. Remove the eleven screws $\mathbf{V}$ retaining the switch board.
6. Remove the two screws $\mathbf{W}$ retaining the active bass ex. switch board.


Fig. 27


Fig. 28


Fig. 29

## Removing the cassette deck main motor, and replacing the main belts

(See Fig.22, 30 and 31)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.
- Also remove the front panel assembly.

1. Remove the five screws $\mathbf{R}$ retaining the cassette deck mechanism.
2. Remove the cassette deck mechanism.
3. Remove the two screws $\mathbf{X}$ retaining the main motor from the front side of the cassette deck.
[Caution] After attaching the main motor, check the orientation of the motor and the polarity of the wires.
4. From the backside of the cassette deck, remove the main motor and two main belts.
[Caution] The lengths of the cassette A (playback only) and cassette B (record/play) main belts are different. When attaching the main belts, use the longer belt for cassette A.


Fig. 30


Fig. 31

## Removing the leaf switches of the

 cassette deck mechanism(See Fig. 22 and 32)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.
- Also remove the front panel assembly.

1. Remove the five screws $\mathbf{R}$ that retain the cassette deck mechanism.
2. Remove the cassette deck mechanism.
3. Turn the cassette deck mechanism upside down.
4. Remove the solder from around the leaf switches.
5. Pull out the leaf switches from the front side of the cassette deck mechanism.


Fig. 32

## Removing the cassette deck heads

 (See Fig. 22 and 33)- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.
- Also remove the front panel assembly.

1. Remove the five screws $\mathbf{R}$ that retain the cassette deck mechanism.
2. Remove the cassette deck mechanism and place it so that the front side faces up.
3. Remove the solder from the bottom side of the head terminal and disconnect the wire.
4. Remove the screw $\mathbf{Y}$ that retains the head.
5. Loosen the screw $\mathbf{Z}$ that retains the head.
6. Hold the head and slide it in the direction of the arrow to remove it.

## Removing the Video \& CD board

(See Fig.2, 34 to 36)

- Prior to performing the following procedures, remove the top cover.

1. Disconnect the card wire from connector CN606 on the main board.
2. Remove the three screws $\mathbf{A A}$ and screw $\mathbf{A B}$ retains the Video \& CD board cover.
3. In order to remove the wire from the Video \& CD board, remove the solder on the power amplifier board.
4. Remove the Video \& CD board cover.
5. Remove the two screws AC retains the Video \& CD board.


Fig. 35


Fig. 33


Fig. 34


Fig. 36

## Removing the 3-pin regulator

(See Fig.2, 37 and 38)

- Prior to performing the following procedures, remove the top cover.

1. Remove the two screws A connecting the heat sink cover to the rear panel.
2. Pull the heat sink cover foward you.
3. Remove the screw $A D$ that retains the bracket holding the 3-pin terminal regulator.
4. Remove the solder fixing the 3-pin regulator.


Fig. 37


Fig. 38

## Removing the power amplifier board, voltage selector board and power transformer board

(See Fig.2, 3, 37, 39 to 42)

- Prior to performing the following procedures, remove the top cover.
- Also remove the CD changer unit.

1. Remove the two screws $\mathbf{A}$ connecting the heat sink cover to the rear panel.
2. Pull out the heat sink cover toward you.
3. Remove the two screws $\mathbf{B}$ that retain the bracket supporting the power IC.
4. Remove the screw AC that retain the bracket holding the 3-pin terminal regulator.
5. Remove the two screws AE that retain the SPEAKERS terminals.
6. Remove the screw AF that retains the rear panel, and then remove the rear panel.
7. Remove the two screws AG that retain the voltage selector board.
8. Disconnect the parallel wires from the connectors CN951A and CN951B on the power amplifier board.
9. Remove the screw $\mathbf{A H}$ that retain the power amplifier board and then remove the assembly.
10. Remove the solders $\mathbf{j}$ connecting the six wires.
11. Remove the four screws AJ that retain the power transformer board and then remove the assembly.


Fig. 41


Fig. 40


Fig. 39


Fig. 42

## Adjustment method

## Measurement instruments required for adjustment

1. Low frequency oscillator,

This oscillator should have a capacity to output 0dB to 600 ohm at an oscillation frequency of $50 \mathrm{~Hz}-20 \mathrm{kHz}$.
2. Attenuator impedance : 600ohm
3. Electronic voltmeter
4. Frequency counter
5. Wow flutter meter
6. Test tape

VT712 : For Tape speed and wow flutter ( 3 kHz )
VT703 : For Head angle(10kHz),Play back frequency
VT724 : For reference signal test( 1 kHz )
VT739 : For frequency response test( $63 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$ )
7. Blank tape

TAPE I : AC-225, TAPE II : AC-514
8. Torque gauge : For play and back tension

Forward ; TW2111A, Reverse ; TW2121A
Fast Forward and Rewind ; TW2231A
9. Test disc
: CTS-1000(12cm),GRG-1211(8cm)
10. Jitter meter

## Measurement conditions

Power supply voltage
AC110/127/220/230-240V (50Hz/60Hz) : US/UX
Measurement
output terminal : Speaker out
:TP101(Measuring for TUNER/DECK/CD)
: Dummy load 6ohm

## Radio input signal

AM modulation frequency : 400 Hz
Modulation factor : 30\%
FM modulation frequency : 400 Hz
Frequency displacement : 22.5 kHz

## Frequency Range

AM $\quad 522 \mathrm{kHz} \sim 1629 \mathrm{kHz}$ (at 9 kHz channel space)
FM $\quad 87.5 \mathrm{MHz} \sim 108 \mathrm{MHz}$

## Standard measurement positions of volume and switch

Power : Standby (Light STANDBY Indicator)
A.BUSS switch: OFF

Sound mode : OFF
Main VOL. maximum
Travers mecha set position : Disc 1
Mic MIX VOL : MAX
ECHO : OFF

## Precautions for measurement

1. Apply 30pF and 33kohm to the IF sweeper output side and $0.082 \mu \mathrm{~F}$ and 100kohm in series to the sweeper input side.
2. The IF sweeper output level should be made as low as possible within the adjustable range.
3. Since the IF sweeper is a fixed device, there is no need to adjust this sweeper.
4. Since a ceramic oscillator is used, there is no need to perform any MPX adjustment.
5. Since a fixed coil is used, there is no need to adjust the FM tracking.
6. The input and output earth systems are separated. In case of simultaneously measuring the voltage in both of the input and output systems with an electronic voltmeter for two channels, therefore, the earth should be connected particularly.
7. In the case of BTL connection amplifier, the minus terminal of speaker is not for earthing. Therefore, be sure not to connect any other earth terminal to this terminal. This system is of an OTL system.

## Arrangement of adjusting positions



## Tuner section

| Items | Measurement conditions | Measurement method | Standard values | Adjusting positions |
| :---: | :---: | :---: | :---: | :---: |
| AM Tracking Alignments | Input signal <br> : 530kHz <br> Measurement point <br> : Resistor R3 (AM) <br> Resistor R6 (FM) <br> İnpū signā <br> : 603 kHz | OSC coil adjustment <br> 1.Set the Signal Generator signal to 530 KHz the feed to Loop Antenna. <br> 2.Receiving the signal and the adjust the OSC coil (L2) obtain the V.T is $1.40 \mathrm{~V}+/-0.05 \mathrm{~V}$. <br> Āntenna coil check or adjustment <br> 1.Change the receiving frequency to 603 KHz . <br> 2.Adjust the Antenna coil ( L2 ) obtain maximum sensitivity. (Adjust the SSG output to out of AGC range.) | V.T $: 1.40 \mathrm{~V}+/-0.05 \mathrm{~V}$ <br> Maximum sensitivity | OSC/Antenna coil : L2 <br> Adjust the OSC coil only when the AM coil block has been changed. |
| AM IFT Alignments | Input signal : 531 kHz | 1. Set the receiving frequency to 531 KHz . <br> 2. Feed the 450 KHz signal to AM IF input. <br> 3.Adjust the IFT Block T1 obtain to maximum output. <br> (Adjust the SSG output to out of AGC range.) | Maximum output | IFT (T1) <br> Adjust the IFT only when the IFT block has been changed. |

Note: The adjustment of $C D$ section is not required.

Flow of functional operation until TOC read


## Maintenance of laser pickup

Replacement of laser pickup
(1) Cleaning the pick up lens

Before you replace the pick up, please try to clean the lens with a alcohol soaked cotton swab.
(2) Life of the laser diode

When the life of the laser diode has expired, the following symptoms will appear.

1. The level of RF output (EFM output:ampli tude of eye pattern) will below.


Turn off the power switch and,disconnect the power cord from the AC OUTLET.

(3) Semi-fixed resistor on the APC PC board

The semi-fixed resistor on the APC printed circuit board which is attached to the pickup is used to adjust the laser power. Since this adjustment should be performed to match the characteristics of the whole optical block, do not touch the semi-fixed resistor.
If the laser power is lower than the specified value, the laser diode is almost worn out, and the laser pickup should be replaced.
If the semi-fixed resistor would be adjusted when the pickup operates normally, the laser pickup may be damaged due to excessive current.

## Description of major ICs

## TMP87CM78 (IC701) : System control microprocessor

1. Terminal layout

2. Pin function

| Pin No. | Symbol | I/O | Function | Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VDD | - | +5V back up supply | 38 | PCNT | 0 | System power on/off control |
| 2 | AB | 0 | Deck A/B select control | 39 | SHFT | 0 | Clock shift output |
| 3 | BIAS | 0 | Recording bias on/off control | 40 | SMUT | 0 | System mute cotrol output |
| 4 | RPHD | 0 | Deck-B head switch control | 41 | SPK | 0 | Speaker mute control output |
| 5 | BC1 | 0 | Bias frequency control | 42 | LMUT | 0 | Line output mute control |
| 6 | uRTS | 1 | MPEG RTS input | 43 | ECHO | 0 | Echo on/off control output |
| 7 | uDA | $1 / 0$ | MPEG serial data I/O | 44 | AHB | 0 | Active bass boost control output |
| 8 | uCLK | 1 | MPEG serial clock input | 45 | KARA | 0 | Karaoke mode on/off control |
| 9 | MPX | 1 | FM stereo indicator input | 46 | VCK | 0 | Sound processor serial clock out |
| 10 | PER | 0 | PLL periode output | 47 | VDAT | 0 | Sound processor serial data out |
| 11 | SD | $1 / 0$ | PLL serial data 1/O | 48 | VOL+ | 1 | Volume up jog signal input |
| 12 | SCK | 0 | PLL serial clock output | 49 | VOL- | 1 | Volume down jog signal input |
| 13 | REM | 1 | IR remote signal input | 50 | VKK | - | -35V supply |
| 14 | KEYO | 1 | Key-0 ADC input | 51~63 | G13~G1 | 0 | VFD grid output |
| 15 | KEY1 | I | Key-1 ADC input | 64~79 | P16~P1 | 0 | VFD plate output |
| 16 | KEY2 | 1 | Key-2 ADC input | 80 | DOP | 0 | MPEG door open |
| 17 | VER | 1 | Version set | 81 | DCL | 0 | MPEG door close |
| 18 | LVL | 1 | Level meter input | 82 | Reservd | - | Reserved |
| 19 | SFTY | 1 | Safety input | 83 | CLS | 0 | Tray close control output |
| 20 | TPA | 1 | Deck-A switch matrix input | 84 | CW | 0 | Turn table CW output |
| 21 | TPB | I | Deck-B switch matrix input | 85 | CCW | 0 | Turn table CCW output |
| 22 | VSS | 1 | Digita ground | 86 | CNTT | 0 | Turn table speed control |
| 23 | VASS | - | ADC reference ground | 87 | OPSW | 1 | Tray open detect switch input |
| 24 | VAREF |  | ADC reference +5V supply | 88 | CLSW | 1 | Tray close detect switch input |
| 25 | VDD |  | +5V back up supply | 89 | UPSW | 1 | Pickup up detect switch input |
| 26 | INH | 1 | INH bit input | 90 | DWSW | 1 | Pickup down detect switch input |
| 27 | TEST | 1 | Test mode / ground | 91 | DCNT | 1 | Disc count switch input |
| 28 | XTI | 1 | $32.768 \mathrm{kHz} \mathrm{X'Tal} \mathrm{iput}$ | 92 | TPSW | 1 | Turn table position SW input |
| 29 | XTO | 0 | $32.768 \mathrm{kHz} \mathrm{X'Tal} \mathrm{output}$ | 93 | OPN | 0 | Tray open control output |
| 30 | VSS | - | Digita ground | 94 | DETA | 1 | Tape-A real rotation detector |
| 31 | XIN | 1 | $8.0 \mathrm{MHz} \mathrm{X'Tal}$ | 95 | DETB | 1 | Tape-B real rotation detector |
| 32 | XOUT | 0 | $8.0 \mathrm{MHz} \mathrm{X'Tal}$ | 96 | MOT | 0 | Motor on/off control |
| 33 | RST | 1 | Reset circuit | 97 | SOLB | 0 | Deck-B solenoide control |
| 34 | USTB | 1 | MPEG strobe input | 98 | SOLA | 0 | Deck-A solenoide control |
| 35 | PRT | 1 | Protector input | 99 | PBM | 0 | Tape playback muting control |
| 36 | FCD | 0 | CD power supply control | 100 | RECM | 0 | Recording mute control |
| 37 | FTU | 0 | Tuner power supply control |  |  |  |  |

## ES3880FL (IC101) : MPEG decoder

## 1. Terminal layout



## 3. Pin function

| Pin No. | Symbol | I/O | Function | Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VDD | - | 3.3V power supply | 82~87 | LA12~17 | 0 | RISC interface address bus |
| 2 | RAS\# | 0 | Row address strobe | 88 | ACLK | I/0 | Master clock for external audio DAC |
| 3 | DWE\# | 0 | DRAM write enable | 89 | AOUT | 0 | Audio interface serial data output when selected. |
| 4~12 | DAO~8 | 0 | DRAM multiplexed row and column address bus |  |  |  |  |
| 13~28 | DBUS0~15 | I/0 | DRAM data bus |  | SEL_PLLO | 1 | System and DSCK output clock frequency selection at reset time. The matrix below lists the available clock frequencies and their respective PLL bit settings. |
| 29 | RESET\# | 1 | System reset |  |  |  |  |
| 30 | VSS | - | Ground |  |  |  |  |
| 31 | VDD | - | 3.3V power supply |  |  |  |  |
| 32~39 | YUV0~7 | 0 | YUV[7:0] 8-bit video data bus |  |  |  |  |
| 40 | VSYNC | I/0 | Vertical sync |  |  |  | SEL_PLLI SEL_PLLO $^{\text {S }}$ DCLK |
| 41 | HSYNC | I/0 | Horizontal sync |  |  |  | 0 Bypass PLL (input mode) |
| 42 | CPUCLK | 1 | RISC and system clock input. CPUCLK is used |  |  |  | 54MHz (output mode)Default |
|  |  |  | only if SEL_PLL[1:0] = 00 to bypass PLL. |  |  |  | 67.5 MHz (output mode) |
| 43 | PCLK2X | I/0 | Doubled 54MHz pixel clock |  |  |  | 81.0 MHz (output mode) |
| 44 | PCLK | $1 / 0$ | 27MHz pixel clock |  |  |  |  |
| 45~49 | AUXO~4 | I/0 | Auxiliary control pins 4:0 | 90 | ATCLK | $1 / 0$ | Audio transmit bit clock |
|  |  |  | AUX0 and AUX1 are open collectors. | 91 | ATFS | 0 | Audio transmit frame sync |
| 50 | VSS | - | Ground |  | SEL_PLL1 | 1 | Refer to the description and matrix for SEL_PLLO pin 89. |
| 51 | VDD | - | 3.3V power supply |  |  |  |  |
| 52 | AUX6 | I/0 | Auxiliary control pins 6 | 92 | DA9 | 0 | DRAM multiplexed row and column address line 9 |
| 53 | AUX5 | $1 / 0$ | Auxiliary control pins 5 |  |  |  |  |
| 54 | AUX7 | $1 / 0$ | Auxiliary control pins 7 |  | DOE\# | 0 | DRAM output enable |
| 55~62 | LD0~7 | I/0 | RISC interface data bus | 93 | AIN | 1 | Audio serial data input |
| 63 | LWR\# | 0 | RISC interface write enable | 94 | ARCLK | 1 | Audio receive bit clock |
| 64 | LOE\# | 0 | RISC interface output enable | 95 | ARFS | 1 | Audio receive frame sync |
| 65 | LCS3\# | 0 | RISC interface chip select | 96 | TDMCLK | 1 | TDM serial clock |
| 66 | LCS1\# | 0 | RISC interface chip select | 97 | TDMDR | 1 | TDM serial data receive |
| 67 | LCSO\# | 0 | RISC interface chip select | 98 | TDMFS | 1 | TDM frame sync |
| $68 \sim 79$ | LA0~11 | 0 | RISC interface address bus | 99 | CAS\# | 0 | DRAM column address strobe |
| 80 | VSS | - | Ground | 100 | VSS | - | Ground |
| 81 | VPP | - | 5.0V power supply |  |  |  |  |

ES3883F (IC102) : Companion chip

1. Terminal layout $80 \sim 51$

2. Pin function

| Pin No. | Symbol | 1/O |  |  | Function | Pin No. | Symbol | 1/O | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VSS | - | Ground |  |  | 44 | VCCAA | 1 | Analog VCC, 5V |
| 2~4 | NC | - | No connect |  |  | 45,46 | AOR+,AOR- | 0 | Right channel output |
| 5 | VCC | - | Voltage supply, 5V |  |  | 47,48 | AOL-,AOL+ | 0 | Left channel output |
| 6 | DSC_C | 1 | Clock for programming to access internal registers |  |  | 49 | MIC1 | 1 | Microphone input 1 |
|  |  |  |  |  |  | 50 | MIC2 | 1 | Microphone input 2 |
| 7 | AUX0 | 1/O | Servo forward or general-purpose I/O |  |  | 51 | VSSAA | - | Audio analog ground |
| 8 | DSC_D0 | I/O | Data for programming to access internal registers |  |  | 52 | VREF | 1 | Internal resister divider generates CMR voltage. <br> Bypass to analog ground with 0.1uF. |
| 9 | AUX1 | 1/O | Servo reverse or general-purpose I/O |  |  |  |  |  |  |
| 10 | DSC_S | 1 | Strobe for programming to access internal registers |  |  | 53 | VREFM | I | DAC and ADC minimum reference. Bypass to VCMR with 10uF in parallel with 0.1uF. |
| 11 | AUX2 | 1/O | Servo LDON or general-purpose I/O |  |  |  |  |  |  |
| 12 | DCLK | 0 | DCLK is the MPEG decoder clock. |  |  | 54 | RSET | 1 | Full-scale DAC current adjustment |
|  | EXT_CLK | I | EXT_CLK is the external clock. <br> EXT_CLK is an input during bypass PLL mode. |  |  | 55 | COMP | 1 | Compensation pin |
|  |  |  |  |  |  | 56,57 | VSSAV | - | Video analog ground |
| 13 | RESET_B | 1 | EXT_CLK is an input during bypass PLL mode. Video reset (active-low) |  |  | 58 | CDAC | 0 | Modulated chrominance output |
| 14 | AUX7/NFD_DI | I/O | Servo BRKM/sense or general-purpose I/O / VFD_DI |  |  | 59,60 | VCCAV | - | Video VCC, 5V |
| 15 | MUTE | 0 | Audio mute |  |  | 61 | YDAC | 0 | Y luminance data bus for screen video port |
| 16 | VCC | - | Voltage supply, 5V |  |  |  |  |  |  |
| 17 | MCLK | 1 | Audio master clock |  |  | 62,63 | VSSAV | - | Video analog ground |
| 18 | AUX8/NFD_CLK | I/O | Servo mute/open or general-purpose I/O / VFD_CLK |  |  | 64 | VDAC | 0 | Composite video output |
| 19 | TWS | 1 | TWS is the transmit audio frame sync. |  |  | 65 | ACAP | 1 | Audio CAP |
|  | SPLL_OUT | 0 | SPLL_OUT is the select PLL output. |  |  | 66 | VCC | - | Voltage supply, 5V |
| 20 | AUX9/SQSO | I/O | Servo SQSO or general-purpose I/O |  |  | 67 | AUX6/VFD_DO | 1/O | Servo XLAT or general-purpose I/O / VFD_DO |
| 21 | TSD | 1 | Transmit audio data input |  |  | 68 | AUX5 | 1/O | Servo data or general-purpose I/O |
| 22 | TBCK | 1 | Transmit audio bit clock |  |  | 69 | AUX4 | 1/0 | Servo CCW/close or general-purpose I/O |
| 23 | RWS | 0 |  |  |  | 70 | AUX3 | 1/0 | Servo CW/limit or general-purpose I/O |
|  | SEL_PLL1 | I | SEL_PLL[1:0] select the PLL clock frequency for the DCLK output. |  |  | 71 | XOUT | 0 | Crystal output |
|  |  |  |  |  |  | 72 | VSS | - | Ground |
|  |  |  | SEL_PLL1 | SEL_PLLO | DCLK | 73 | VCC | - | Voltage supply, 5V |
|  |  |  | 0 | 0 | Bypass PLL (input mode) | 74 | XIN | 1 | 27MHz crystal input |
|  |  |  | 0 | 1 | 27 MHz (output mode) | 75 | VSS | - | Ground |
|  |  |  | 1 | 0 | 32.4 MHz (output mode) | 76 | NC | - | No connect |
|  |  |  | 1 | 1 | 40.5 MHz (output mode) | 77 | VSS | - | Ground |
|  |  |  |  |  |  | 78 | VCC | - | Voltage supply, 5V |
| 24 | RSTOUT_B | 0 | Reset outp | ut (active- | low) | 79 | PCLK | 1/O | 13.5MHz pixel clock |
| 25,26 | VSS | - | Ground |  |  | 80 | 2XPCLK | 1/O | $27 \mathrm{MHz}(2$ times pixel clock) |
| 27~30 | NC | - | No connec |  |  | 81 | DSC_D7 | I/O | Data for programming to access internal |
| 31 | VSS | - | Ground |  |  |  |  |  | registers |
| 32 | VCC | - | Voltage sup | ply, 5V |  | 82 | HSYNC_B | 0 | Horizontal sync (active-low) |
| 33 | RSD | 0 | RSD is the | receive a | dio data input. | 83 | DSC_D6 | 1/O | Data for programming to access internal |
|  | SEL_PLLO | 1 | SEL_PLLO | and SEL | PLL1 select the PLL clock |  |  |  | registers |
|  |  |  | frequency | $r$ the DC | LK output. Refer to the | 84 | VSYNC_B | 0 | Vertical sync (active-low) |
|  |  |  | table in the | definition | for pin 23. | 85 | DSC_D5 | 1/0 | Data for programming to access internal |
| 34 | AUX10/SQCK | I/O | Servo SQCK | K or gen | ral-purpose I/O |  |  |  | registers |
| 35 | AUX11/IRQ | I/O | ES3880 IRQ | or interru | pt output or general-purpose I/O | 86~89 | YUV7~4 | 1 | YUV data bus for screen video port |
| 36 | AUX12/C2PO | I/O | CD C2PO | or interrup | t input or general-purpose I/O | 90 | VCC | - | Voltage supply, 5V |
| 37 | RBCK | 0 | RBCK is th | e receive | audio bit clock. | 91 | VSS | - | Ground |
|  | SER_IN | 1 | SER_IN is | the serial | input DSC mode: | 92 | YUV3 | 1 | YUV data bus for screen video port |
|  |  |  | $\begin{aligned} & 0=\text { Paralle } \\ & 1=\text { Serial } \end{aligned}$ | DSC mo DSC mod | de | 93 | DSC_D4 | I/O | Data for programming to access internal registers |
| 38 | AUX13/SP | I/O | Serial inter | upt/CD-m | mute or general-purpose I/O | 94 | YUV2 | 1 | YUV data bus for screen video port |
| 39 | AUX14/SOSI | I/O | Servo SCOR or general- | $\begin{aligned} & \text { R (SOSI) } \\ & \text { purpose } \end{aligned}$ | , interrupt input, $\mathrm{O}$ | 95 | DSC_D3 | I/O | Data for programming to access internal registers |
| 40 | AUX15/IR | I/O | Interrupt in | put or gen | eral-purpose I/O | 96 | YUV1 | 1 | YUV data bus for screen video port |
| 41 | VSSAA | - | Audio anal | g ground |  | 97 | DSC_D2 | I/O | Data for programming to access internal |
| 42 | VCM | 1 | ADC comm | n mode r | ference (CMR) buffer output. |  |  |  | registers |
|  |  |  | CMR is app | roximately | 2.25 V . Bypass to analog ground | 98 | YUV0 | 1 | YUV data bus for screen video port |
|  |  |  | with 47uF | ectrolytic | in paralell with 0.1 uF . | 99 | DSC_D1 | I/O | Data for programming to access internal |
| 43 | VREFP | 1 | DAC and A | DC maxim | um reference. Bypass to video |  |  |  | registers |
|  |  |  | CMR (VCM | R ) with 10 | uF in parallel with 0.14 F . | 100 | VSS | - | Ground |

BA15218 / BA15218F (IC102 / IC852) : Dual operational amplifier

1. Terminal layout \& block diagram


## BA3837 (IC103) : MIC Mixer

1. Terminal layout \& block diagram

2. Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :--- |
| 1 | VCC | - | Power supply |
| 2 | MIC | I | Microphone mixing input |
| 3 | LOUT | O | Channel L output |
| 4 | FK | - | Non connect |
| 5 | TK | - | Non connect |
| 6 | LIN | I | Channel L input |
| 7 | BIAS | I | Signal bias |
| 8 | GND | - | Connect to GND |
| 9 | RIN | I | Channel R input |
| 10 | LP | O | Connects to LPF time constant element |
| 11 | LP | O | Connects to LPF time constant element |
| 12 | LP | O | LPF outpout |
| 13 | ROUT | O | Channel R output |
| 14 | A | I | Mode select input A |
| 15 | B | I | Mode select input B |
| 16 | C | I | Mode select input C |

## BU9253FS (IC851) : Low pass filter \& echo mixer

1. Terminal layout \& block diagram

2. Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :--- |
| 1 | GND | - | Connect GND |
| 2 | ECHO VR | I | Echo level control |
| 3 | BIAS | - | Analog part DC bias |
| 4 | DAINTO | O | DA side integrator output |
| 5 | DAINTI | I | DA side integrator intput |
| 6 | DALPFI | I | DA side LPF input |
| 7 | DALPFO | O | DA side LPF output |
| 8 | MIXO | O | Mix AMP output for original tone\& echo tone |
| 9 | MIXI | I | Mix AMP input pin for original tone |
| 10 | ADLPFI | I | AD side LPF input |
| 11 | ADLPFO | O | AD side LPF output |
| 12 | ADINTO | O | AD side integrator output |
| 13 | ADINTI | I | AD side integrator input |
| 14 | VCC | - | Power supply |
| 15 | MUTE | I | Mute control signal input |
| 16 | CR | - | CR pin for oscillator |

## PST9119 (IC703) : Reset IC

1. Terminal layout

2. Block diagram


## STK402-070 (IC151) : 2-ch audio power amplifier

1. Terminal layout

2. Block diagram


## ■ TA2092N (IC603) : Power driver IC for CD

## 1. Terminal layout \&Block diagram

2. Pin function

| PIN <br> No. | Symbol | I/O | Function | PIN <br> No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | PWGND | - | Power ground | 13 | PWGND | - | Power ground |
| 2 | OUT(-)1 | O | Inverted output for CH1 | 14 | OUT(-)3 | O | Inverted output for CH3 |
| 3 | PVCC1 | - | Supply terminal of output stage for CH 1 | 15 | PVCC3 | - | Supply terminal of output stage for CH3 |
| 4 | OUT(+)1 | O | Non-inverted output for CH1 | 16 | OUT(+)3 | O | Non-inverted output for CH3 |
| 5 | VIN1 | I | Input for CH1 | 17 | VIN3 | I | Input for CH3 |
| 6 | VRI | I | Input reference voltage | 18 | SGND | - | Supply terminal of small signal ground |
| 7 | VCl | O | Output reference voltage | 19 | SVCC | - | Small signal ground |
| 8 | VIN2 | I | Input for CH2 | 20 | VIN4 | I | Input for CH4 |
| 9 | OUT(+)2 | O | Non-inverted output for CH2 | 21 | OUT $(+) 4$ | O | Non-inverted output for CH4 |
| 10 | PVCC2 | - | Supply terminal of output stage for CH2 | 22 | PVCC4 | - | Supply terminal of output stage for CH4 |
| 11 | OUT(-)2 2 | O | Inverted output for CH2 | 23 | OUT(-)4 | O | Inverted output for CH4 |
| 12 | PWGND | - | Power ground | 24 | PWGND | - | Power ground |

## TA2153FN (IC601) : RF amplifier for digital servo

1. Terminal layout

| VCC | 1 | 30 | RFN2 |
| ---: | :--- | :--- | :--- | :--- |
| RFAGC | 2 | 29 | GND |
| GMAD | 3 | 28 | RFO |
| FNI | 4 | 27 | AGCIN |
| FPI | 5 | 26 | GVSW |
| TPI | 6 | 25 | RFGO |
| TNI | 7 | 24 | RFRPIN |
| MDI | 8 | 23 | PKC |
| LDO | 9 | 22 | RFCT |
| SEL | 10 | 21 | STC |
| TEB | 11 | 20 | RFRP |
| 2VRO | 12 | 19 | VRO |
| TEN | 13 | 18 | SEB |
| TEO | 14 | 17 | FEN |
| SBAD | 15 | 16 | FEO |

2. Block diagram

3. Pin function


## TA8189 (IC401) : REC/PB amplifier

1. Terminal layout

2. Block diagram

3. Pin function

| Pin <br> No. | Symbol | I/O | Function | Pin <br> No. | Symbol | I/O |  |
| :---: | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | CH1_A | I | Input for playback amp. (Ch1): A cassette <br> (PB) | 13 | ALC | I | ALC filter terminal |
| 2 | CH1_B | I | Input for playback amp. (Ch1): B cassette <br> (REC/PB) | 14 | REC_IN2 | I | Input for recording amp. |
| 3 | NF1 | I | NF terminal for playback amp. | 15 | REC_NF2 | I | NF terminal for recording amp. |
| 4 | EQ1 | O | Metal output for playback amp. | 16 | REC_OUT2 | O | Output for recording amp. |
| 5 | PREOUT1 | O | Output terminal for playback amp. | 17 | CG | O | Charge detection terminal |
| 6 | MIX_OUT | O | Mixing output | 18 | VCC | - | Power supply terminal |
| 7 | GND1 | - | Ground | 19 | A/B_SW | I | REC amp. Select switch (A cassette/B <br> cassette) |
| 8 | EQSW | I | Metal/Normal mode select switch | 20 | PREOUT2 | O | Output terminal for playback amp. |
| 9 | REC_OUT1 | O | Output for recording amp. | 21 | EQ2 | O | Metal output for playback amp. |
| 10 | REC_NF1 | I | NF terminal for recording amp. | 22 | NF2 | I | NF terminal for playback amp. |
| 11 | REC_IN1 | I | Input for recording amp. | 23 | CH2_B | I | Input for playback amp. (Ch2): B cassette <br> (REC/PB) |
| 12 | GND1 | - | Ground terminal | 24 | CH2_A | I | Input for playback amp. (Ch2): A cassette <br> (PB) |

## TA8409S (IC604, IC605) : Motor driver

## 1. Terminal layout


2. Truth table

| INPUT |  | OUTPUT |  | MODE |
| :---: | :---: | :---: | :---: | :---: |
| IN1 | IN2 | OUT1 | OUT2 | MOTOR |
| 0 | 0 | $\infty$ | $\infty$ | STOP |
| 1 | 0 | H | L | CW/CCW |
| 0 | 1 | L | H | CCW/CW |
| 1 | 1 | L | L | BRAKE |

## TA2104N (IC1) : 1chip AM/FM, MPX tuner system

1. Terminal layout

| RFGND | 1 | 24 | FM RFOUT |
| :---: | :---: | :---: | :---: |
| FM_RFIN | 2 | 23 | RFV̄CC |
| AM_FIL | 3 | 22 | AM_RFIN |
| MIX_OUT | 4 | 21 | FM_OSC |
| VCC | 5 | 20 | AM_OSC |
| AM_IFIN | 6 | 19 | OSC̄_OUT |
| FM_IFIN | 7 | 18 | ST_IND |
| GND | 8 | 17 | IF_REQ |
| AGC | 9 | 16 | DET_OUT |
| QUAD | 10 | 15 | MPX_IN |
| R_OUT | 11 | 14 | LPF2/M_ST |
| L_OUT | 12 | 13 | LPF1/BĀND |

2. Pin function

| PIN <br> No. | Symbol |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: | :--- | I/O $\quad$ Function | PIN |
| :---: |
| No. | Symbol | I/O |
| :--- |

## TC9257P (IC2) : PLL frequency synthesizer

1. Terminal layout

| XT | 1 | 20 | DO2 |
| :---: | :---: | :---: | :---: |
| $\overline{\text { XT }}$ | 2 | 19 | DO1 |
| PERIOD | 3 | 18 | I/O-7 |
| CLOCK | 4 | 17 | I/O-8 / NF1 |
| DATA | 5 | 16 | I/O-9 / NF2 |
| OT-1 | 6 | 15 | GND |
| OT-2 | 7 | 14 | FMIN |
| OT-3 | 8 | 13 | AMIN |
| OT-4 | 9 | 12 | VDD |
| I/O-5 / CLK | 10 | 11 | I/O-6 |

2. Pin function

| PIN No. | Symbol | I/O | Function | $\begin{array}{\|l\|} \hline \mathrm{PIN} \\ \mathrm{No} . \end{array}$ | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | XT | 1 | Crystal oscillator pins | 13 | AMIN | 1 | Programmable counter input |
| 2 | XT | 0 | Crystal oscillator pins | 14 | FMIN | 1 | Programmable counter input |
| 3 | PERIOD | 1 | Period signal input | 15 | GND | - | Ground pin |
| 4 | CLOCK | 1 | Clock signal input | 16 | I/O-9 | I/O | General-purpose I/O port |
| 5 | DATA | I/O | Serial data input/output |  | NF2 | 1 | General-purpose counter frequency |
| 6 | OT-1 | O | General-purpose output port |  |  |  | measurement input |
| 7 | OT-2 | 0 | General-purpose output port | 17 | //0-8 | I/O | General-purpose l/O port |
| 8 | OT-3 | 0 | General-purpose output port |  | NF1 | 1 | General-purpose counter frequency |
| 9 | OT-4 | 0 | General-purpose output port |  |  |  | measurement input |
| 10 | I/O-5/CLK | I/O | General-purpose l/O port | 18 | 1/0-7 | 1/O | General-purpose l/O port |
| 11 | I/O-6 | I/O | General-purpose l/O port | 19 | D01 | O | Phase comparator output |
| 12 | VDD | - | Power supply pin | 20 | D02 | 0 | Phase comparator output |

3. Block diagram


## TC9462F (IC602) : Digital servo single chip processor

## 1. Terminal layout



## 2. Pin function



| PinNo. | Symbol | I/O | Function | Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | RFGC | 0 | RF amplitude adjustment control signal output terminal. | 71 | TESIN | I | Test input terminal. Normally, keep at "L" level. |
|  |  |  |  | 72 | TESIO1 | 1 | Test input/output terminal. Normally, keep at "L" level. |
| 52 | TEBC | 0 | Tracking balance control signal output terminal. |  |  |  |  |
| 53 | FMO | 0 | Feed equalizer output terminal. | 73 | VSS |  | Digital ground terminal. |
| 54 | FVO | 0 | Speed error signal or feed search equlizer output terminal. | 74 | PXI | 1 | Crystal oscillator connecting input terminal for DSP. Normally, keep at "L" level. |
| 55 | DMO | 0 | Disk equalizer output terminal. (PWM carrier= 88.2 kHz for DSP, Synchronize to PXO) | 75 | PXO | 0 | Crystal oscillator connecting output terminal for DSP. |
| 56 | 2VREF | - | Analog double reference voltage supply terminal. | 76 | VDD |  | Digital power supply voltage terminal. |
|  |  |  |  | 77 | XVSS |  | Oscillator ground terminal for system clock |
| 57 | SEL | 0 | APC circuit ON/OFF indication signal output terminal. At the laser on time, $U H F=L$ at " HiZ " level and UHF = H at "H" level. | 78 | XI | I | Crystal oscillator connecting input terminal for system clock. |
|  |  |  |  | 79 | XO | 0 | Crystal oscillator connecting output terminal for system clock. |
| 58 | FLGA | 0 | Extermal flag output terminal for internal signal. Can select signal from TEZC, $\overline{F O O N}$, FOK and RFZC by command. |  |  |  |  |
|  |  |  |  | 80 | XVDD |  | Oscillator power supply voltage terminal for system clock. |
| 59 | FLGB | 0 | Extermal flag output terminal for internal signal. Can select signal from DFCT, $\overline{\mathrm{FOON}}$, $\overline{\text { FMON and RFZC by command. }}$ | 81 | DVSR |  | Analog ground terminal for DA converter.(R-ch) |
|  |  |  |  | 82 | RO | 0 | R channel data forward output terminal. |
|  |  |  |  | 83 | DVDD |  | Analog supply voltage terminal for DA converter. |
| 60 | FLGC | 0 | Extermal flag output terminal for internal signal. Can select signal from TRON, TRSR, $\overline{\mathrm{FOK}}$ and $\overline{\mathrm{SRCH}}$ by command. |  |  |  |  |
|  |  |  |  | 84 | DVR |  | Reference voltage terminal for DA converter. |
|  |  |  |  | 85 | LO | 0 | L channel data forward output terminal. |
| 61 | FLGD | 0 | Extermal flag output terminal for internal signal. Can select signal from TRON, $\overline{\mathrm{DMON}}$, HYS and $\overline{S H C}$ by command. | 86 | DVSL |  | Analog ground terminal for DA converter.(L-ch) |
|  |  |  |  | 87 | TEST1 | 1 | Test mode terminal. Normal, keep at open. |
|  |  |  |  | 88 | TEST2 | 1 | Test mode terminal. Normal, keep at open. |
| 62 | VDD |  | Digital power supply voltage terminal. | 89 | TEST3 | 1 | Test mode terminal. Normal, keep at open. |
| 63 | VSS |  | Digital ground terminal. | 90 | BUSO | I/0 | Micon interface data input/output terminal. |
| 64 | 100 | I/0 | General I/O terminal. Can change over input | 91 | BUS1 | I/O |  |
| 65 | 101 | I/O | port or output port by command. At the input | 92 | BUS2 | I/0 |  |
| 66 | 102 | I/0 | mode time can readout a state of terminal (H/L) | 93 | BUS3 | I/0 |  |
| 67 | 103 | I/O | by read command. At the output mode time can control a state of terminal (H/L/HiZ) by command. | 94 | VDD | - | Digital power supply voltage terminal. |
|  |  |  |  | 95 | VSS | - | Digital ground terminal. |
|  |  |  |  | 96 | BUCK | 1 | Micon interface clock input terminal. |
| 68 | DMOUT | I | This terminal controls $100 \sim 103$ terminal. At "L" level time, IOO, 1 out feed equalizer signal of 2-state PWM, IO2,3 out disk equalizer signal of 2-state PWM. | 97 | CCE | I | Command and data sending/receiving chip enable signal input terminal. <br> The bus line becomes active at "L" level. |
|  |  |  |  | 98 | TEST4 | 1 | Test mode terminal. Normal, keep at open. |
| 69 | CKSE | 1 | Normally, keep at open. | 99 | TSMOD | 1 | Local test mode selection terminal. |
| 70 | DACT | 1 | DAC test mode terminal. Normally, keep at open. | 100 | RST | , | Reset signal input terminal. Reset at "L" level. |

TDA7440D (IC101) : Audio processor

2. Block diagram


4C16256 (IC103) : 4MB EDO-RAM

## 1. Terminal layout

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| vcc | 1 | 40 | $\square \mathrm{GND}$ |
| Do | 2 | 39 | $\square$ D15 |
| D1 | 3 | 38 | D14 |
| D2 | 4 | 37 | $\square$ D13 |
| D3 | 5 | 36 | $\square$ D12 |
| VCC | 6 | 35 | $\square$ GND |
| D4 | 7 | 34 | $\square$ D11 |
| D5 | 8 | 33 | D10 |
| D6 | 9 | 32 | D9 |
| D7 | 10 | 31 | $\square \mathrm{D}^{\text {c }}$ |
| NC | 11 | 30 | NC |
| NC | 12 | 29 | CASL |
| WE | 13 | 28 | $\square \mathrm{CASH}$ |
| RAS | 14 | 27 | $\square \mathrm{OE}$ |
| NC | 15 | 26 | A8 |
| AO | 16 | 25 | A7 |
| A1 | 17 | 24 | A6 |
| A2 | 18 | 23 | A5 |
| A3 | 19 | 22 | A4 |
| vcc $\square$ | 20 | 21 | GND |

2. Pin function

| PIN No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :--- |
| $1,6,20$ | VCC | - | Power supply terminal |
| $2 \sim 5,7 \sim 10$, <br> $31 \sim 34,36 \sim 39$ | D0~D15 | I/O | Data input/output |
| $11,12,15,30$ | NC | - |  |
| 13 | WE | I | Wot used |
| 14 | RAS | I | Row address strobe terminal |
| $16 \sim 19,22 \sim 26$ | A0~A8 | I | Address input |
| $21,35,40$ | GND | - | Ground teminal |
| 27 | OE | I | Output enable terminal |
| 28 | CASH | I | Upper column address strobe terminal |
| 29 | CASL | I | Lower column address strobe terminal |

## 27C020 (IC104) : 2MB PROM

1. Terminal layout

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| VPP $\square$ | 1 | 32 | $\checkmark \mathrm{VCC}$ |
| A16 | 2 | 31 | $\square$ PGM |
| A15 | 3 | 30 | A17 |
| A12 | 4 | 29 | A14 |
| A7 | 5 | 28 | A13 |
| A6 | 6 | 27 | A8 |
| A5 | 7 | 26 | A9 |
| A4 | 8 | 25 | A11 |
| A3 | 9 | 24 | $\square \overline{\mathrm{O}}$ |
| A2 | 10 | 23 | $\square \mathrm{A} 10$ |
| A1 | 11 | 22 | $\checkmark \overline{C E}$ |
| A0 | 12 | 21 | $\square$ D7 |
| D0 | 13 | 20 | D6 |
| D1 | 14 | 19 | D5 |
| D2 | 15 | 18 | $\square \mathrm{D}^{\text {4 }}$ |
| GND - | 16 | 17 | D3 |

2. Pin function

| PIN No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :--- |
| 1 | VPP | - | Power supply terminal |
| $2 \sim 12$ | A16,A15,A12,A7~A0 | I | Address input |
| $13 \sim 15$ | D0~D2 | I/O | Data input/output |
| 16 | GND | - | Ground terminal |
| $17 \sim 21$ | D3~D7 | I/O | Data input/output |
| 22 | $\overline{\mathrm{CE}}$ | I | Chip enable terminal |
| 23 | A10 | I | Address input |
| 24 | $\overline{\mathrm{OE}}$ | I | Output enable teminal |
| $25 \sim 30$ | A11,A9,A8,A13,A14,A17 | I | Address input |
| 31 | $\overline{\text { PGM }}$ | I | Program strobe |
| 32 | VCC | - | Power supply terminal |

## Wiring connections



Power transformer board

